# Relational Processing on MapReduce

- Jerome Simeon
- IBM Watson Research

- Content obtained from many sources,
- notably: Jimmy Lin course on MapReduce.

## Our Plan Today

- 1. Recap:
  - Key relational DBMS notes
  - Key Hadoop notes
- 2. Relational Algorithms on MapReduce
  - How to do a select, groupby, join etc
- 3. Queries on MapReduce: Hive and Pig

## **Big Data Analysis**

- Peta-scale datasets are everywhere:
  - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
  - eBay has 6.5 PB of user data + 50 TB/day (5/2009)
  - ...
- OA lot of these datasets have some structure
  - Query logs
  - Point-of-sale records
  - User data (e.g., demographics)
  - ...
- Ohow do we perform data analysis at scale?
  - Relational databases and SQL
  - MapReduce (Hadoop)

## Relational Databases vs. MapReduce

#### •Relational databases:

- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization

#### •MapReduce (Hadoop):

- Designed for large clusters, fault tolerant
- Data is accessed in "native format"
- Supports many query languages
- Programmers retain control over performance
- Open source

#### **Database Workloads**

#### OLTP (online transaction processing)

- Typical applications: e-commerce, banking, airline reservations
- User facing: real-time, low latency, highly-concurrent
- Tasks: relatively small set of "standard" transactional queries
- Data access pattern: random reads, updates, writes (involving relatively small amounts of data)

#### OLAP (online analytical processing)

- Typical applications: business intelligence, data mining
- Back-end processing: batch workloads, less concurrency
- Tasks: complex analytical queries, often ad hoc
- Data access pattern: table scans, large amounts of data involved per query

#### **One Database or Two?**

- ODOWNSIDES of co-existing OLTP and OLAP workloads
  - Poor memory management
  - Conflicting data access patterns
  - Variable latency
- Solution: separate databases
  - User-facing OLTP database for high-volume transactions
  - Data warehouse for OLAP workloads
  - How do we connect the two?

## **OLTP/OLAP Architecture**



## **OLTP/OLAP Integration**

- OLTP database for user-facing transactions
  - Retain records of all activity
  - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
  - Extract records from source
  - Transform: clean data, check integrity, aggregate, etc.
  - Load into OLAP database
- OLAP database for data warehousing
  - Business intelligence: reporting, ad hoc queries, data mining, etc.
  - Feedback to improve OLTP services

## **Business Intelligence**

- Premise: more data leads to better business decisions
  - Periodic reporting as well as ad hoc queries
  - Analysts, not programmers (importance of tools and dashboards)

#### •Examples:

- Slicing-and-dicing activity by different dimensions to better understand the marketplace
- Analyzing log data to improve OLTP experience
- Analyzing log data to better optimize ad placement
- Analyzing purchasing trends for better supply-chain management
- Mining for correlations between otherwise unrelated activities

## **OLTP/OLAP Architecture: Hadoop?**



## **OLTP/OLAP/Hadoop Architecture**



Why does this make sense?

#### **ETL Bottleneck**

#### •Reporting is often a nightly task:

- ETL is often slow: why?
- What happens if processing 24 hours of data takes longer than 24 hours?

#### OHadoop is perfect:

- Most likely, you already have some data warehousing solution
- Ingest is limited by speed of HDFS
- Scales out with more nodes
- Massively parallel
- Ability to use any processing tool
- Much cheaper than parallel databases
- ETL is a batch process anyway!

## MapReduce: Recap

•Programmers must specify:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

- All values with the same key are reduced together
- Optionally, also:

```
partition (k', number of partitions) \rightarrow partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations combine  $(k', v') \rightarrow \langle k', v' \rangle^*$ 
  - Mini-reducers that run in memory after the map phase
  - Used as an optimization to reduce network traffic
- The execution framework handles everything else...



## "Everything Else"

- The execution framework handles everything else...
  - Scheduling: assigns workers to map and reduce tasks
  - "Data distribution": moves processes to data
  - Synchronization: gathers, sorts, and shuffles intermediate data
  - Errors and faults: detects worker failures and restarts
- •Limited control over data and execution flow
  - All algorithms must expressed in m, r, c, p
- You don't know:
  - Where mappers and reducers run
  - When a mapper or reducer begins or finishes
  - Which input a particular mapper is processing
  - Which intermediate key a particular reducer is processing

## MapReduce algorithms for processing relational data

## **Design Pattern: Secondary Sorting**

- •MapReduce sorts input to reducers by key
  - Values are arbitrarily ordered
- •What if want to sort value also?
  - E.g.,  $k \rightarrow (v1, r), (v3, r), (v4, r), (v8, r)...$

## **Secondary Sorting: Solutions**

#### Solution 1:

- Buffer values in memory, then sort
- Why is this a bad idea?

#### Solution 2:

- "Value-to-key conversion" design pattern: form composite intermediate key, (k, v1)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?

## Value-to-Key Conversion

#### **Before**

$$k \rightarrow (v1, r), (v4, r), (v8, r), (v3, r)...$$
 Values arrive in arbitrary order...

#### **After**

$$(k, v1) \rightarrow (v1, r)$$
  
 $(k, v3) \rightarrow (v3, r)$   
 $(k, v4) \rightarrow (v4, r)$   
 $(k, v8) \rightarrow (v8, r)$ 

Values arrive in sorted order...

Process by preserving state across multiple keys

Remember to partition correctly!

## **Working Scenario**

#### •Two tables:

- User demographics (gender, age, income, etc.)
- User page visits (URL, time spent, etc.)

#### •Analyses we might want to perform:

- Statistics on demographic characteristics
- Statistics on page visits
- Statistics on page visits by URL
- Statistics on page visits by demographic characteristic
- •

## **Relational Algebra**

#### Primitives

- Projection (π)
- Selection (σ)
- Cartesian product (x)
- Set union (∪)
- Set difference (–)
- Rename (ρ)

#### Other operations

- Join (⋈)
- Group by... aggregation
- ...

## **Projection**



## **Projection in MapReduce**

- Easy!
  - Map over tuples, emit new tuples with appropriate attributes
  - No reducers, unless for regrouping or resorting tuples
  - Alternatively: perform in reducer, after some other processing
- •Basically limited by HDFS streaming speeds
  - Speed of encoding/decoding tuples becomes important
  - Relational databases take advantage of compression
  - Semistructured data? No problem!

## **Selection**



## **Selection in MapReduce**

- Easy!
  - Map over tuples, emit only tuples that meet criteria
  - No reducers, unless for regrouping or resorting tuples
  - Alternatively: perform in reducer, after some other processing
- •Basically limited by HDFS streaming speeds
  - Speed of encoding/decoding tuples becomes important
  - Relational databases take advantage of compression
  - Semistructured data? No problem!

## **Group by... Aggregation**

- •Example: What is the average time spent per URL?
- OIn SQL:
  - SELECT url, AVG(time) FROM visits GROUP BY url
- •In MapReduce:
  - Map over tuples, emit time, keyed by url
  - Framework automatically groups values by keys
  - Compute average in reducer
  - Optimize with combiners



Source: Microsoft Office Clip Art

## **Relational Joins**



## **Types of Relationships**



## Join Algorithms in MapReduce

- Reduce-side join
- •Map-side join
- In-memory join
  - Striped variant
  - Memcached variant

#### **Reduce-side Join**

- •Basic idea: group by join key
  - Map over both sets of tuples
  - Emit tuple as value with join key as the intermediate key
  - Execution framework brings together tuples sharing the same key
  - Perform actual join in reducer
  - Similar to a "sort-merge join" in database terminology

#### •Two variants

- 1-to-1 joins
- 1-to-many and many-to-many joins

## Reduce-side Join: 1-to-1

#### Map



#### **Reduce**



Note: no guarantee if R is going to come first or S

## Reduce-side Join: 1-to-many

#### Map



#### Reduce



## What's the problem?

#### Reduce-side Join: V-to-K Conversion

#### In reducer...



## Reduce-side Join: many-to-many

In reducer...



What's the problem?

## Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:



A sequential scan through both datasets to join (called a "merge join" in database terminology)

#### **Map-side Join: Parallel Scans**

- Olf datasets are sorted by join key, join can be accomplished by a scan over both datasets
- •How can we accomplish this in parallel?
  - Partition and sort both datasets in the same manner
- •In MapReduce:
  - Map over one dataset, read from other corresponding partition
  - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?

## **In-Memory Join**

- OBasic idea: load one dataset into memory, stream over other dataset
  - Works if R << S and R fits into memory</li>
  - Called a "hash join" in database terminology
- •MapReduce implementation
  - Distribute R to all nodes
  - Map over S, each mapper loads R in memory, hashed by join key
  - For every tuple in S, look up join key in R
  - No reducers, unless for regrouping or resorting tuples

## **In-Memory Join: Variants**

#### Striped variant:

- R too big to fit into memory?
- Divide R into R1, R2, R3, ... s.t. each Rn fits into memory
- Perform in-memory join:  $\forall n$ ,  $Rn \bowtie S$
- Take the union of all join results

#### •Memcached join:

- Load R into memcached
- Replace in-memory hash lookup with memcached lookup

#### Memcached



**Caching servers:** 15 million requests per second, 95% handled by memcache (15 TB of RAM)

**Database layer:** 800 eight-core Linux servers running MySQL (40 TB user data)

Source: Technology Review (July/August, 2008)

#### **Memcached Join**

- •Memcached join:
  - Load R into memcached
  - Replace in-memory hash lookup with memcached lookup
- Capacity and scalability?
  - Memcached capacity >> RAM of individual node
  - Memcached scales out with cluster
- •Latency?
  - Memcached is fast (basically, speed of network)
  - Batch requests to amortize latency costs

# Which join to use?

- •In-memory join > map-side join > reduce-side join
  - Why?
- •Limitations of each?
  - In-memory join: memory
  - Map-side join: sort order and partitioning
  - Reduce-side join: general purpose

## **Processing Relational Data: Summary**

- •MapReduce algorithms for processing relational data:
  - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
  - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
  - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
  - Example: top ten URLs in terms of average time spent
  - Opportunities for automatic optimization

# **Evolving roles for** relational database and MapReduce

## **OLTP/OLAP/Hadoop Architecture**



Why does this make sense?

#### **Need for High-Level Languages**

- Hadoop is great for large-data processing!
  - But writing Java programs for everything is verbose and slow
  - Analysts don't want to (or can't) write Java
- Solution: develop higher-level data processing languages
  - Hive: HQL is like SQL
  - Pig: Pig Latin is a bit like Perl

# **Hive and Pig**

- OHive: data warehousing application in Hadoop
  - Query language is HQL, variant of SQL
  - Tables stored on HDFS as flat files
  - Developed by Facebook, now open source
- Pig: large-scale data processing system
  - Scripts are written in Pig Latin, a dataflow language
  - Developed by Yahoo!, now open source
  - Roughly 1/3 of all Yahoo! internal jobs
- Common idea:
  - Provide higher-level language to facilitate large-data pro
  - Higher-level language "compiles down" to Hadoop jobs





## **Hive: Example**

- OHive looks similar to an SQL database
- •Relational join on two tables:
  - Table of word counts from Shakespeare collection
  - Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

```
the 25848
         62394
   23031 8854
and 19671 38985
   18038 13526
to
of 16700 34654
   14170 8057
you 12702 2720
   11297 4135
my
   10797
           12445
in
   88826884
is
```

Source: Material drawn from Cloudera training VM

#### **Hive: Behind the Scenes**

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;



(Abstract Syntax Tree)

 $(TOK\_QUERY\ (TOK\_FROM\ (TOK\_JOIN\ (TOK\_TABREF\ shakespeare\ s)\ (TOK\_TABREF\ bible\ k)\ (= (.\ (TOK\_TABLE\_OR\_COL\ s)\ word)\ (.\ (TOK\_TABLE\_OR\_COL\ k)\ word))))\ (TOK\_INSERT\ (TOK\_DESTINATION\ (TOK\_DIR\ TOK\_TMP\_FILE))\ (TOK\_SELECT\ (TOK\_SELEXPR\ (.\ (TOK\_TABLE\_OR\_COL\ s)\ freq)))\ (TOK\_SELEXPR\ (.\ (TOK\_TABLE\_OR\_COL\ s)\ freq)))\ (TOK\_SELEXPR\ (.\ (TOK\_TABLE\_OR\_COL\ s)\ freq)\ 1)))\ (TOK\_ORDERBY\ (TOK\_TABSORTCOLNAMEDESC\ (.\ (TOK\_TABLE\_OR\_COL\ s)\ freq))))\ (TOK\_LIMIT\ 10)))$ 



(one or more of MapReduce jobs)

#### **Hive: Behind the Scenes**

```
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
                                                                                                                      Stage: Stage-2
Stage-0 is a root stage
                                                                                                                       Map Reduce
STAGE PLANS:
Stage: Stage-1
  Map Reduce
   Alias -> Map Operator Tree:
     TableScan
      alias: s
                                                                                                                              tag: -1
      Filter Operator
        predicate:
          expr: (freq >= 1)
          type: boolean
        Reduce Output Operator
         key expressions:
             expr: word
             type: string
         sort order: +
                                                                                                                          Extract
         Map-reduce partition columns:
                                              Reduce Operator Tree:
                                                                                                                          Limit
             expr: word
                                                  Join Operator
             type: string
                                                   condition map:
         tag: 0
                                                      Inner Join 0 to 1
         value expressions:
                                                   condition expressions:
                                                                                                                              table:
             expr: freq
                                                    0 {VALUE. col0} {VALUE. col1}
             type: int
                                                    1 {VALUE._col0}
             expr: word
                                                   outputColumnNames: _col0, _col1, _col2
             type: string
                                                   Filter Operator
                                                    predicate:
                                                                                                                      Stage: Stage-0
     TableScan
                                                      expr: ((_col0 >= 1) and (_col2 >= 1))
                                                                                                                       Fetch Operator
      alias: k
                                                      type: boolean
                                                                                                                        limit: 10
      Filter Operator
                                                    Select Operator
        predicate:
                                                      expressions:
          expr: (freq >= 1)
                                                         expr: col1
          type: boolean
                                                         type: string
        Reduce Output Operator
                                                         expr: col0
         key expressions:
                                                         type: int
             expr: word
                                                         expr: _col2
             type: string
                                                         type: int
         sort order: +
                                                      outputColumnNames: col0, col1, col2
         Map-reduce partition columns:
                                                     File Output Operator
             expr: word
                                                      compressed: false
             type: string
                                                      GlobalTableId: 0
         tag: 1
                                                      table:
         value expressions:
                                                         input format; org.apache.hadoop.mapred.SequenceFileInputFormat
             expr: freq
                                                         output format: org.apache.hadoop.hive.gl.io.HiveSequenceFileOutputFormat
             type: int
```

```
Alias -> Map Operator Tree:
 hdfs://localhost:8022/tmp/hive-training/364214370/10002
   Reduce Output Operator
     key expressions:
         expr: _col1
         type: int
     sort order: -
     value expressions:
         expr: _col0
         type: string
         expr: col1
         type: int
         expr: _col2
         type: int
Reduce Operator Tree:
   File Output Operator
     compressed: false
     GlobalTableId: 0
       input format: org.apache.hadoop.mapred.TextInputFormat
       output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
```