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•Our Plan Today

1. Recap:
– Key relational DBMS notes
– Key Hadoop notes

2. Relational Algorithms on MapReduce
–How to do a select, groupby, join etc

3. Queries on MapReduce: Hive and Pig



Big Data Analysis
Peta-scale datasets are everywhere:

Facebook has 2.5 PB of user data + 15 TB/day (4/2009) 
eBay has 6.5 PB of user data + 50 TB/day (5/2009)
…

A lot of these datasets have some structure
Query logs
Point-of-sale records
User data (e.g., demographics)
…

How do we perform data analysis at scale?
Relational databases and SQL
MapReduce (Hadoop)



Relational Databases vs. MapReduce
Relational databases:

Multipurpose: analysis and transactions; batch and interactive
Data integrity via ACID transactions
Lots of tools in software ecosystem (for ingesting, reporting, etc.)
Supports SQL (and SQL integration, e.g., JDBC)
Automatic SQL query optimization

MapReduce (Hadoop):
Designed for large clusters, fault tolerant
Data is accessed in “native format”
Supports many query languages
Programmers retain control over performance
Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)



Database Workloads
OLTP (online transaction processing)

Typical applications: e-commerce, banking, airline reservations
User facing: real-time, low latency, highly-concurrent
Tasks: relatively small set of “standard” transactional queries
Data access pattern: random reads, updates, writes (involving 

relatively small amounts of data)
OLAP (online analytical processing)

Typical applications: business intelligence, data mining
Back-end processing: batch workloads, less concurrency
Tasks: complex analytical queries, often ad hoc
Data access pattern: table scans, large amounts of data involved per 

query



One Database or Two?
Downsides of co-existing OLTP and OLAP workloads

Poor memory management
Conflicting data access patterns
Variable latency

Solution: separate databases
User-facing OLTP database for high-volume transactions
Data warehouse for OLAP workloads
How do we connect the two?



OLTP/OLAP Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)



OLTP/OLAP Integration
OLTP database for user-facing transactions

Retain records of all activity
Periodic ETL (e.g., nightly)

Extract-Transform-Load (ETL)
Extract records from source
Transform: clean data, check integrity, aggregate, etc.
Load into OLAP database

OLAP database for data warehousing
Business intelligence: reporting, ad hoc queries, data mining, etc.
Feedback to improve OLTP services



Business Intelligence
Premise: more data leads to better business decisions

Periodic reporting as well as ad hoc queries
Analysts, not programmers (importance of tools and dashboards)

Examples:
Slicing-and-dicing activity by different dimensions to better 

understand the marketplace
Analyzing log data to improve OLTP experience
Analyzing log data to better optimize ad placement
Analyzing purchasing trends for better supply-chain management
Mining for correlations between otherwise unrelated activities



OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop here?

What about here?



OLTP/OLAP/Hadoop Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

Why does this make sense?



ETL Bottleneck
Reporting is often a nightly task:

ETL is often slow: why?
What happens if processing 24 hours of data takes longer than 24 

hours?
Hadoop is perfect:

Most likely, you already have some data warehousing solution
 Ingest is limited by speed of HDFS
Scales out with more nodes
Massively parallel
Ability to use any processing tool
Much cheaper than parallel databases
ETL is a batch process anyway!



MapReduce: Recap
Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*

All values with the same key are reduced together
Optionally, also:
partition (k’, number of partitions) → partition for k’

Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

The execution framework handles everything else…



combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3



“Everything Else”
The execution framework handles everything else…

Scheduling: assigns workers to map and reduce tasks
 “Data distribution”: moves processes to data
Synchronization: gathers, sorts, and shuffles intermediate data
Errors and faults: detects worker failures and restarts

Limited control over data and execution flow
All algorithms must expressed in m, r, c, p

You don’t know:
Where mappers and reducers run
When a mapper or reducer begins or finishes
Which input a particular mapper is processing
Which intermediate key a particular reducer is processing



MapReduce algorithms 
for processing relational data



Design Pattern: Secondary Sorting
MapReduce sorts input to reducers by key

Values are arbitrarily ordered
What if want to sort value also?

E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…



Secondary Sorting: Solutions
Solution 1:

Buffer values in memory, then sort
Why is this a bad idea?

Solution 2:
 “Value-to-key conversion” design pattern: form composite 

intermediate key, (k, v1)
Let execution framework do the sorting
Preserve state across multiple key-value pairs to handle processing
Anything else we need to do?



Value-to-Key Conversion

k → (v1, r), (v4, r), (v8, r), (v3, r)…

(k, v1) → (v1, r)

Before

After

(k, v3) → (v3, r)
(k, v4) → (v4, r)
(k, v8) → (v8, r)

Values arrive in arbitrary order…

…

Values arrive in sorted order…
Process by preserving state across multiple keys

Remember to partition correctly!



Working Scenario
Two tables:

User demographics (gender, age, income, etc.)
User page visits (URL, time spent, etc.)

Analyses we might want to perform:
Statistics on demographic characteristics
Statistics on page visits
Statistics on page visits by URL
Statistics on page visits by demographic characteristic
…



Relational Algebra
Primitives

Projection (π)
Selection (σ)
Cartesian product (×)
Set union (∪)
Set difference (−)
Rename (ρ)

Other operations
Join ( )⋈
Group by… aggregation
…



Projection 

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5



Projection in MapReduce
Easy!

Map over tuples, emit new tuples with appropriate attributes
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!



Selection

R1

R2

R3

R4

R5

R1

R3



Selection in MapReduce
Easy!

Map over tuples, emit only tuples that meet criteria
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!



Group by… Aggregation
Example: What is the average time spent per URL?
In SQL:

SELECT url, AVG(time) FROM visits GROUP BY url
In MapReduce:

Map over tuples, emit time, keyed by url
Framework automatically groups values by keys
Compute average in reducer
Optimize with combiners



Relational Joins

Source: Microsoft Office Clip Art



Relational Joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3



Types of Relationships

One-to-OneOne-to-ManyMany-to-Many



Join Algorithms in MapReduce
Reduce-side join
Map-side join
In-memory join

Striped variant
Memcached variant



Reduce-side Join
Basic idea: group by join key

Map over both sets of tuples
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform actual join in reducer
Similar to a “sort-merge join” in database terminology

Two variants
1-to-1 joins
1-to-many and many-to-many joins



Reduce-side Join: 1-to-1

R1

R4

S2

S3

R1

R4

S2

S3

keys values
Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S



Reduce-side Join: 1-to-many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

What’s the problem?



Reduce-side Join: V-to-K Conversion

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other set

New key encountered: hold in memory

Cross with records from other set



Reduce-side Join: many-to-many

R1

keys values

In reducer…

S2

S3

S9

Hold in memory

Cross with records from other set

R5

R8

What’s the problem?



Map-side Join: Basic Idea
Assume two datasets are sorted by the join key:

R1

R2

R3

R4

S1

S2

S3

S4

A sequential scan through both datasets to join
(called a “merge join” in database terminology)



Map-side Join: Parallel Scans
If datasets are sorted by join key, join can be accomplished 

by a scan over both datasets
How can we accomplish this in parallel?

Partition and sort both datasets in the same manner
In MapReduce:

Map over one dataset, read from other corresponding partition
No reducers necessary (unless to repartition or resort)

Consistently partitioned datasets: realistic to expect?



In-Memory Join
Basic idea: load one dataset into memory, stream over 

other dataset
Works if R << S and R fits into memory
Called a “hash join” in database terminology

MapReduce implementation
Distribute R to all nodes
Map over S, each mapper loads R in memory, hashed by join key
For every tuple in S, look up join key in R
No reducers, unless for regrouping or resorting tuples



In-Memory Join: Variants
Striped variant:

R too big to fit into memory? 
Divide R into R1, R2, R3, … s.t. each Rn fits into memory
Perform in-memory join: ∀n, Rn  S⋈
Take the union of all join results

Memcached join:
Load R into memcached
Replace in-memory hash lookup with memcached lookup



Memcached

Database layer: 800 eight-core Linux servers 
running MySQL (40 TB user data)

Caching servers: 15 million requests per second, 
95% handled by memcache (15 TB of RAM)

Source: Technology Review (July/August, 2008)



Memcached Join
Memcached join:

Load R into memcached
Replace in-memory hash lookup with memcached lookup

Capacity and scalability?
Memcached capacity >> RAM of individual node
Memcached scales out with cluster

Latency?
Memcached is fast (basically, speed of network)
Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)



Which join to use?
In-memory join > map-side join > reduce-side join

Why?
Limitations of each?

 In-memory join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose



Processing Relational Data: Summary
MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by 
shuffle/sort in MapReduce

Selection, projection, and other computations (e.g., aggregation), are 
performed either in mapper or reducer

Multiple strategies for relational joins
Complex operations require multiple MapReduce jobs

Example: top ten URLs in terms of average time spent
Opportunities for automatic optimization



Evolving roles for 
relational database and MapReduce



OLTP/OLAP/Hadoop Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

Why does this make sense?



Need for High-Level Languages
Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow
Analysts don’t want to (or can’t) write Java

Solution: develop higher-level data processing languages
Hive: HQL is like SQL
Pig: Pig Latin is a bit like Perl



Hive and Pig
Hive: data warehousing application in Hadoop

Query language is HQL, variant of SQL
Tables stored on HDFS as flat files
Developed by Facebook, now open source

Pig: large-scale data processing system
Scripts are written in Pig Latin, a dataflow language
Developed by Yahoo!, now open source
Roughly 1/3 of all Yahoo! internal jobs

Common idea:
Provide higher-level language to facilitate large-data processing
Higher-level language “compiles down” to Hadoop jobs



Hive: Example
Hive looks similar to an SQL database
Relational join on two tables:

Table of word counts from Shakespeare collection
Table of word counts from the bible

Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s 
  JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 
  ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 88826884



Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s 
  JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 
  ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) 
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT 
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (. 
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k) 
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)



Hive: Behind the Scenes
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-2 depends on stages: Stage-1
  Stage-0 is a root stage

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Alias -> Map Operator Tree:
        s 
          TableScan
            alias: s
            Filter Operator
              predicate:
                  expr: (freq >= 1)
                  type: boolean
              Reduce Output Operator
                key expressions:
                      expr: word
                      type: string
                sort order: +
                Map-reduce partition columns:
                      expr: word
                      type: string
                tag: 0
                value expressions:
                      expr: freq
                      type: int
                      expr: word
                      type: string
        k 
          TableScan
            alias: k
            Filter Operator
              predicate:
                  expr: (freq >= 1)
                  type: boolean
              Reduce Output Operator
                key expressions:
                      expr: word
                      type: string
                sort order: +
                Map-reduce partition columns:
                      expr: word
                      type: string
                tag: 1
                value expressions:
                      expr: freq
                      type: int

 Reduce Operator Tree:
        Join Operator
          condition map:
               Inner Join 0 to 1
          condition expressions:
            0 {VALUE._col0} {VALUE._col1}
            1 {VALUE._col0}
          outputColumnNames: _col0, _col1, _col2
          Filter Operator
            predicate:
                expr: ((_col0 >= 1) and (_col2 >= 1))
                type: boolean
            Select Operator
              expressions:
                    expr: _col1
                    type: string
                    expr: _col0
                    type: int
                    expr: _col2
                    type: int
              outputColumnNames: _col0, _col1, _col2
              File Output Operator
                compressed: false
                GlobalTableId: 0
                table:
                    input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                    output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

 Stage: Stage-2
    Map Reduce
      Alias -> Map Operator Tree:
        hdfs://localhost:8022/tmp/hive-training/364214370/10002 
            Reduce Output Operator
              key expressions:
                    expr: _col1
                    type: int
              sort order: -
              tag: -1
              value expressions:
                    expr: _col0
                    type: string
                    expr: _col1
                    type: int
                    expr: _col2
                    type: int
      Reduce Operator Tree:
        Extract
          Limit
            File Output Operator
              compressed: false
              GlobalTableId: 0
              table:
                  input format: org.apache.hadoop.mapred.TextInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

 Stage: Stage-0
    Fetch Operator
      limit: 10
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