
Relational Processing
•on MapReduce

• Jerome Simeon
• IBM Watson Research

• Content obtained from many sources,
• notably: Jimmy Lin course on MapReduce.

•Our Plan Today

1. Recap:
– Key relational DBMS notes
– Key Hadoop notes

2. Relational Algorithms on MapReduce
–How to do a select, groupby, join etc

3. Queries on MapReduce: Hive and Pig

Big Data Analysis
Peta-scale datasets are everywhere:

Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
eBay has 6.5 PB of user data + 50 TB/day (5/2009)
…

A lot of these datasets have some structure
Query logs
Point-of-sale records
User data (e.g., demographics)
…

How do we perform data analysis at scale?
Relational databases and SQL
MapReduce (Hadoop)

Relational Databases vs. MapReduce
Relational databases:

Multipurpose: analysis and transactions; batch and interactive
Data integrity via ACID transactions
Lots of tools in software ecosystem (for ingesting, reporting, etc.)
Supports SQL (and SQL integration, e.g., JDBC)
Automatic SQL query optimization

MapReduce (Hadoop):
Designed for large clusters, fault tolerant
Data is accessed in “native format”
Supports many query languages
Programmers retain control over performance
Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

Database Workloads
OLTP (online transaction processing)

Typical applications: e-commerce, banking, airline reservations
User facing: real-time, low latency, highly-concurrent
Tasks: relatively small set of “standard” transactional queries
Data access pattern: random reads, updates, writes (involving

relatively small amounts of data)
OLAP (online analytical processing)

Typical applications: business intelligence, data mining
Back-end processing: batch workloads, less concurrency
Tasks: complex analytical queries, often ad hoc
Data access pattern: table scans, large amounts of data involved per

query

One Database or Two?
Downsides of co-existing OLTP and OLAP workloads

Poor memory management
Conflicting data access patterns
Variable latency

Solution: separate databases
User-facing OLTP database for high-volume transactions
Data warehouse for OLAP workloads
How do we connect the two?

OLTP/OLAP Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

OLTP/OLAP Integration
OLTP database for user-facing transactions

Retain records of all activity
Periodic ETL (e.g., nightly)

Extract-Transform-Load (ETL)
Extract records from source
Transform: clean data, check integrity, aggregate, etc.
Load into OLAP database

OLAP database for data warehousing
Business intelligence: reporting, ad hoc queries, data mining, etc.
Feedback to improve OLTP services

Business Intelligence
Premise: more data leads to better business decisions

Periodic reporting as well as ad hoc queries
Analysts, not programmers (importance of tools and dashboards)

Examples:
Slicing-and-dicing activity by different dimensions to better

understand the marketplace
Analyzing log data to improve OLTP experience
Analyzing log data to better optimize ad placement
Analyzing purchasing trends for better supply-chain management
Mining for correlations between otherwise unrelated activities

OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop here?

What about here?

OLTP/OLAP/Hadoop Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

Why does this make sense?

ETL Bottleneck
Reporting is often a nightly task:

ETL is often slow: why?
What happens if processing 24 hours of data takes longer than 24

hours?
Hadoop is perfect:

Most likely, you already have some data warehousing solution
 Ingest is limited by speed of HDFS
Scales out with more nodes
Massively parallel
Ability to use any processing tool
Much cheaper than parallel databases
ETL is a batch process anyway!

MapReduce: Recap
Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*

All values with the same key are reduced together
Optionally, also:
partition (k’, number of partitions) → partition for k’

Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

The execution framework handles everything else…

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

“Everything Else”
The execution framework handles everything else…

Scheduling: assigns workers to map and reduce tasks
 “Data distribution”: moves processes to data
Synchronization: gathers, sorts, and shuffles intermediate data
Errors and faults: detects worker failures and restarts

Limited control over data and execution flow
All algorithms must expressed in m, r, c, p

You don’t know:
Where mappers and reducers run
When a mapper or reducer begins or finishes
Which input a particular mapper is processing
Which intermediate key a particular reducer is processing

MapReduce algorithms
for processing relational data

Design Pattern: Secondary Sorting
MapReduce sorts input to reducers by key

Values are arbitrarily ordered
What if want to sort value also?

E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

Secondary Sorting: Solutions
Solution 1:

Buffer values in memory, then sort
Why is this a bad idea?

Solution 2:
 “Value-to-key conversion” design pattern: form composite

intermediate key, (k, v1)
Let execution framework do the sorting
Preserve state across multiple key-value pairs to handle processing
Anything else we need to do?

Value-to-Key Conversion

k → (v1, r), (v4, r), (v8, r), (v3, r)…

(k, v1) → (v1, r)

Before

After

(k, v3) → (v3, r)
(k, v4) → (v4, r)
(k, v8) → (v8, r)

Values arrive in arbitrary order…

…

Values arrive in sorted order…
Process by preserving state across multiple keys

Remember to partition correctly!

Working Scenario
Two tables:

User demographics (gender, age, income, etc.)
User page visits (URL, time spent, etc.)

Analyses we might want to perform:
Statistics on demographic characteristics
Statistics on page visits
Statistics on page visits by URL
Statistics on page visits by demographic characteristic
…

Relational Algebra
Primitives

Projection (π)
Selection (σ)
Cartesian product (×)
Set union (∪)
Set difference (−)
Rename (ρ)

Other operations
Join ()⋈
Group by… aggregation
…

Projection

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection in MapReduce
Easy!

Map over tuples, emit new tuples with appropriate attributes
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!

Selection

R1

R2

R3

R4

R5

R1

R3

Selection in MapReduce
Easy!

Map over tuples, emit only tuples that meet criteria
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!

Group by… Aggregation
Example: What is the average time spent per URL?
In SQL:

SELECT url, AVG(time) FROM visits GROUP BY url
In MapReduce:

Map over tuples, emit time, keyed by url
Framework automatically groups values by keys
Compute average in reducer
Optimize with combiners

Relational Joins

Source: Microsoft Office Clip Art

Relational Joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Types of Relationships

One-to-OneOne-to-ManyMany-to-Many

Join Algorithms in MapReduce
Reduce-side join
Map-side join
In-memory join

Striped variant
Memcached variant

Reduce-side Join
Basic idea: group by join key

Map over both sets of tuples
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform actual join in reducer
Similar to a “sort-merge join” in database terminology

Two variants
1-to-1 joins
1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

R1

R4

S2

S3

R1

R4

S2

S3

keys values
Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

What’s the problem?

Reduce-side Join: V-to-K Conversion

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other set

New key encountered: hold in memory

Cross with records from other set

Reduce-side Join: many-to-many

R1

keys values

In reducer…

S2

S3

S9

Hold in memory

Cross with records from other set

R5

R8

What’s the problem?

Map-side Join: Basic Idea
Assume two datasets are sorted by the join key:

R1

R2

R3

R4

S1

S2

S3

S4

A sequential scan through both datasets to join
(called a “merge join” in database terminology)

Map-side Join: Parallel Scans
If datasets are sorted by join key, join can be accomplished

by a scan over both datasets
How can we accomplish this in parallel?

Partition and sort both datasets in the same manner
In MapReduce:

Map over one dataset, read from other corresponding partition
No reducers necessary (unless to repartition or resort)

Consistently partitioned datasets: realistic to expect?

In-Memory Join
Basic idea: load one dataset into memory, stream over

other dataset
Works if R << S and R fits into memory
Called a “hash join” in database terminology

MapReduce implementation
Distribute R to all nodes
Map over S, each mapper loads R in memory, hashed by join key
For every tuple in S, look up join key in R
No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants
Striped variant:

R too big to fit into memory?
Divide R into R1, R2, R3, … s.t. each Rn fits into memory
Perform in-memory join: ∀n, Rn S⋈
Take the union of all join results

Memcached join:
Load R into memcached
Replace in-memory hash lookup with memcached lookup

Memcached

Database layer: 800 eight-core Linux servers
running MySQL (40 TB user data)

Caching servers: 15 million requests per second,
95% handled by memcache (15 TB of RAM)

Source: Technology Review (July/August, 2008)

Memcached Join
Memcached join:

Load R into memcached
Replace in-memory hash lookup with memcached lookup

Capacity and scalability?
Memcached capacity >> RAM of individual node
Memcached scales out with cluster

Latency?
Memcached is fast (basically, speed of network)
Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)

Which join to use?
In-memory join > map-side join > reduce-side join

Why?
Limitations of each?

 In-memory join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose

Processing Relational Data: Summary
MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by
shuffle/sort in MapReduce

Selection, projection, and other computations (e.g., aggregation), are
performed either in mapper or reducer

Multiple strategies for relational joins
Complex operations require multiple MapReduce jobs

Example: top ten URLs in terms of average time spent
Opportunities for automatic optimization

Evolving roles for
relational database and MapReduce

OLTP/OLAP/Hadoop Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

Why does this make sense?

Need for High-Level Languages
Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow
Analysts don’t want to (or can’t) write Java

Solution: develop higher-level data processing languages
Hive: HQL is like SQL
Pig: Pig Latin is a bit like Perl

Hive and Pig
Hive: data warehousing application in Hadoop

Query language is HQL, variant of SQL
Tables stored on HDFS as flat files
Developed by Facebook, now open source

Pig: large-scale data processing system
Scripts are written in Pig Latin, a dataflow language
Developed by Yahoo!, now open source
Roughly 1/3 of all Yahoo! internal jobs

Common idea:
Provide higher-level language to facilitate large-data processing
Higher-level language “compiles down” to Hadoop jobs

Hive: Example
Hive looks similar to an SQL database
Relational join on two tables:

Table of word counts from Shakespeare collection
Table of word counts from the bible

Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 88826884

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Hive: Behind the Scenes
STAGE DEPENDENCIES:
 Stage-1 is a root stage
 Stage-2 depends on stages: Stage-1
 Stage-0 is a root stage

STAGE PLANS:
 Stage: Stage-1
 Map Reduce
 Alias -> Map Operator Tree:
 s
 TableScan
 alias: s
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
 tag: 0
 value expressions:
 expr: freq
 type: int
 expr: word
 type: string
 k
 TableScan
 alias: k
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
 tag: 1
 value expressions:
 expr: freq
 type: int

 Reduce Operator Tree:
 Join Operator
 condition map:
 Inner Join 0 to 1
 condition expressions:
 0 {VALUE._col0} {VALUE._col1}
 1 {VALUE._col0}
 outputColumnNames: _col0, _col1, _col2
 Filter Operator
 predicate:
 expr: ((_col0 >= 1) and (_col2 >= 1))
 type: boolean
 Select Operator
 expressions:
 expr: _col1
 type: string
 expr: _col0
 type: int
 expr: _col2
 type: int
 outputColumnNames: _col0, _col1, _col2
 File Output Operator
 compressed: false
 GlobalTableId: 0
 table:
 input format: org.apache.hadoop.mapred.SequenceFileInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

 Stage: Stage-2
 Map Reduce
 Alias -> Map Operator Tree:
 hdfs://localhost:8022/tmp/hive-training/364214370/10002
 Reduce Output Operator
 key expressions:
 expr: _col1
 type: int
 sort order: -
 tag: -1
 value expressions:
 expr: _col0
 type: string
 expr: _col1
 type: int
 expr: _col2
 type: int
 Reduce Operator Tree:
 Extract
 Limit
 File Output Operator
 compressed: false
 GlobalTableId: 0
 table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

 Stage: Stage-0
 Fetch Operator
 limit: 10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

